Home

Documentation

GitHub

Volreg brick

Registers each 3D volume from the input dataset to the base volume using AFNI 3dvolreg

Mandatory inputs parameters:

  • in_file (a string representing an existing file)

    Input file (valid extensions: [.nii, .nii.gz]).

    ex. '/home/username/data/raw_data/func.nii'
    

Optional inputs with default value parameters:

  • copyorigin (a boolean, optional, default value is False)

    Copy base file origin coords to output.

    ex. False
    
  • interpolation (Fourier or linear or cubic or quintic or heptic, optional, default value is heptic)
    Different interpolation methods:
    • Fourier = Use a Fourier method (the default: most accurate; slowest).

    • linear = Use linear (1st order polynomial) interpolation (least accurate).

    • cubic = Use the cubic (3rd order) Lagrange polynomial interpolation.

    • quintic = Use the quintic (5th order) Lagrange polynomial interpolation.

    • heptic = Use the heptic (7th order) Lagrange polynomial interpolation.

    ex. heptic
    
  • output_type (NIFTI or NIFTI_GZ, optional, default value is NIFTI)
    Format of the output image (one of NIFTI, NIFTI_GZ).
    - NIFTI: *.nii
    - NIFTI_GZ: *.nii.gz
    ex. NIFTI
    
  • out_prefix (a string, optional, default value is ‘reg’)

    Prefix of the output image.

    ex. 'reg_'
    
  • save_oned_matrix (a boolean, optional, default value is False)

    Save the transformation matrix oned matrix.

    ex. False
    
  • save_md1d_file (a boolean, optional, default value is False)

    Save max displacement outputfile (md1d) file.

    ex. False
    
  • timeshift (a boolean, optional, default value is False)

    Time shift to mean slice time offset.

    ex. False
    
  • twopass (a boolean, optional, default value is False)

    Do two passes of the registration algorithm: (1) with smoothed base and data bricks, with linear interpolation, to get a crude alignment, then’ (2) with the input base and data bricks, to get a fine alignment. This method is useful when aligning high-resolution datasets that may need to be moved more than a few voxels to be aligned.

    ex. False
    
  • zpad (a integer, optional, default value is 4)

    Zeropad around the edges by ‘n’ voxels during rotations.

    ex. 4
    

Optional inputs with default value parameters:

  • in_weight_volume (a tuple (a string representing an existing file, Integer), optional)

    Weights for each voxel specified by a file with an optional volume number (defaults to 0). Default is Undefined (ie parameter not used).

    ex. ('/home/username/data/raw_data/mask.nii', 0)
    

Outputs parameters:

  • md1d_file (a strings representing a file, optional)

    The transformation matrix (extensions: [.aff12.1D]).

    ex. '/home/username/data/derived_data/reg_func_md.1D'
    
  • oned_file (a strings representing a file)

    Movement parameters file (extensions: [.txt]).

    ex. '/home/username/data/derived_data/reg_func_oned.txt'
    
  • oned_matrix (a strings representing a file, optional)

    Transformation matrix (extensions: [.aff12.1D]).

    ex. '/home/username/data/derived_data/reg_func_oned_matrix.aff12.1D'
    
  • out_file (a strings representing a file)

    Register file (extensions: [.nii, .nii.gz]).

    ex. '/home/username/data/derived_data/reg_func.nii'
    

Useful links:

AFNI 3dvolreg

AFNI Volreg - nipype